

ERASMUS MUNDUS MASTER IN

IMAGE PROCESSING AND COMPUTER VISION

MSc THESIS

Automatic Typography Analysis on

Figurative Content

PRESENTED AT

UNIVERSITE DE BORDEAUX

Author: WASIM, Syed Talal

Academic Supervisor: DESBARATS, Pascal

Consultant (CVLAB, EPFL): SALZMANN, Mathieu

Consultant (EPFL+ECAL LAB): RIBES LEMAY, Delphine

DATE: June, 2021

Master Thesis Proposal Form

(IPCV Programme)

Student data:

Name: Syed Talal Wasim Neptun ID: A91SIO

UAM student ID: 426062 UBx student ID: 21924087

Cohort (academic year of starting the IPCV program): 2019

Internship data:

Academic course: Master’s Thesis 2021

Company/Institution: Ecole Polytechnique Fédérale de Lausanne

Starting date: February 15, 2021 Ending date: June 30, 2021

Internship consultant/responsible at the Company/Institution:

• Name: Mathieu Salzmann

• Position: Scientist

Working place (full address):

BC 309 (Bâtiment BC), Station 14, CH-1015 Lausanne, SWITZERLAND

Workday info:

• Average hours per day: 40

• Working schedule (starting/ending hour or flexible): flexible

• Total internship hours: 752

Salary (gross amount €/month): 0/month

i

University data:

University1: UBx

Academic supervisor:

• Name: Pascal Desbarats

• Department: LaBRI

• Position: Resp. master’s in computer science IPCV course

Academic co-supervisor (if any):

• Name:

• Department:

• Position:

Master Thesis description:

Title: Automatic Typography Analysis on Figurative Content

Introduction/Objectives2:

The Museum of Gestaltung, in Zurich, has one of the biggest poster collections in

the World. It has established a design research partnership with the EPFL+ECAL

lab about visitors’ engagement with this heritage. The collaboration will investigate

how artificial intelligence can open new forms of representation, association and

perception.

We hypothesize that showing the construction structure of the posters will

strengthen visitor engagement with the collection. To understand poster creation

some key elements can be analysed such as the grid, the lines of force and the

typography.

In the last years many algorithms have been developed in order to automatically

recognize the characters present in a text. However, little is known about automatic

typographic analysis. It consists in recognizing the font style (e.g. serif, …), the

variation (e.g. bold, italic, …), the decoration (e.g. Capitals. underline, …), the

height of the letters and the font name (e.g. Helvetica).

The proposed project aims at taking stock on the topic of automatic typographic

analysis and at initiating the development of a framework to automatically extract

typographic information. The project will start by finding and testing existing

algorithms and evaluate their performances then initiating the technological transfer

to the physical installation which will reveal the poster collection.

Workplan (list of tasks and their schedule)2:

● Task 1: Literature Review

○ Read and summarize literature on:

○ Text detection, segmentation and classification

1 Underline as appropriate
2 Expand as required ii

○ Font classification

○ Deep learning for SVG images

● Task 2: Compose the dataset

○ Extract text from poster collection (CRAFT algorithm)

○ Build a segmentation pipeline to generate binary masks

○ Extract individual characters, image trace and convert to SVG

● Task 3: Build an Encoder/Decoder model

○ Based on DeepSVG

○ For abstract latent space comparison

○ Read and understand the DeepSVG model

○ Modify as required and train the model on the custom dataset

○ Look into the possibility of transfer learning from the letter icons
dataset used in the original paper

● Task 4: Identify specific Typography features

○ Read up on Typography features and understand significance of
each.

○ Define a set of features to be recognized based on importance.

○ Using traditional image processing techniques, build pipelines to
extract those features.

Tentative Schedule:

Task 1: February and March 2021 (Mostly in February. Might continue in March in
case of some specific topics coming up later)

Task 2: February and March 2021

Task 3 & 4: March, April and May 2021 (The two tasks will run in parallel
considering that the Segmentation/Deep SVG models would take a significant
amount of time to train)

Testing of implementation and Consolidation of Results: May 2021

iii

SIGNATURES:

Hereby I undertake to supervise the Master’s thesis of the student.

Place and date: Lausanne, February 25, 2021

Signature of Company/Institution consultant
or responsible

Hereby I undertake to supervise the Master’s thesis of the student.

Place and date: Talence, 25/02/2021

Signature of University supervisor

Hereby I apply for the approval of the topic of my Master’s thesis and declare that I wish to

take the final exam and defend my thesis at the following University3:

Pázmány Péter Catholic University

Universidad Autónoma de Madrid

Université de Bordeaux

Place and date: Bordeaux, France, 25/2/2021

Signature of student

3 Underline as appropriate iv

The topic of the Master’s thesis has been approved following the rules and agreements

required by the Partner University under the scope of the IPCV Programme.

Place and date: Talence, 25/02/2021

IPCV local coordinator

v

Declaration of Authenticity

I, the undersigned Syed Talal Wasim, student of the Image Processing and Computer Vision

MSc program, hereby certify that this thesis has been written without any unauthorized help,

solely by me, using only the referenced sources. Every part quoted in whole or in part is

indicated clearly with a reference.

I declare that I have not submitted this thesis in any other higher education institution, excluding

the partner universities of the IPCV Consortium.

 ...

 Syed Talal Wasim

vi

Abstract

The automatic detection of typographic features is of immense importance for designers

because it can help reveal interesting insights regarding pieces of art such as historical

posters. Since typographic features are numerous, this thesis focuses on four of them,

namely calculation of contrast, classification of serifs, associating character based on

typographic similarity, and developing feature descriptors that can encode the notion of

typographic complexity.

Firstly, for contrast calculation, a multi-step algorithm is introduced which exploits

the inherent geometric nature and infinite scalability of vector graphics. It achieves highly

accurate results on a dataset of varied fonts and characters, with a mean error of 39%

and a minimum error of 0.3%. The mean error goes so high because the model fails

with < 600% error in outlier cases where the character boundary is not a simple polygon

(which is an assumption of the algorithm).

Secondly, for serif classification, both general and fine-grained image classification

models are evaluated. It is found that while the general image classification model

(EfficientNet-B2) achieves good accuracy on the train and validations sets (∼ 96%), it

fails to generalize to a font independent test (achieving an accuracy of only 69%). While

the fine-grained recognition model is comparatively worse on the validation set (∼ 80%),

it achieves ∼ 90% accuracy on the test set.

Thirdly, on the topic of similarity, an SVG-based Variational Auto-Encoder is pro-

posed that uses only character labels to learn different font features. The resulting model

is able to differentiate sans-serif vs serif fonts and group together fonts of the same family.

However, it is not able to differentiate between different kinds of serifs and struggles to

differentiate between different families of fonts.

Finally, for typographic complexity, four description vectors are proposed which at-

tempt to aggregate the highly abstract notion of typographic complexity as described

by design experts. The feature descriptors use various statistics (like mean, max, std-

deviation, a combination of all) on SVG image features (like the number of points and

vii

paths). Among the four descriptors, there is no clear indication for which one is the

best because responses from the design experts are mixed. However, some trends are

noticed that show that feature descriptors working with maximum and a combination of

all statistics tend to be the best while the one working with standard deviation is rejected

by all designers.

To conclude, an attempt is made towards the automatic analysis of four typographic

features. For the contrast and serif classification, highly accurate results are achieved.

For similarity, results look promising, but training and evaluation with larger datasets

is clearly required. Finally, the highly subjective nature of complexity makes it difficult

to formulate and evaluate. However, an attempt is made to build a global descriptor for

typographic complexity.

viii

Acknowledgements

I wish to thank my supervisors Dr. Pascal Desbarats (Université de Bordeaux), Dr.

Mathieu Salzmann (CVLAB, EPFL) and Delphine Ribes Lemay (EPFL+ECAL Lab) for

their constant guidance and support throughout the project, and their help in reviewing

this thesis. Special thanks to Romain Collaud, for his expert advice on different aspects of

typography and fonts, along with labelling the ground truth dataset for the font contrast

calculation. To Céline Dupuis and André for providing support in generating appropriate

results and datasets. And to Yves Kalberer for helping in setting up computation systems

at lab for me to access remotely.

ix

Contents

Thesis Proposal i

Thesis Authenticity Statement vi

Abstract vii

Acknowledgements ix

1 Introduction 1

1.1 History and Importance of Typography 2

1.2 The Poster Collection . 2

1.3 Summary of Tasks Performed . 2

1.3.1 Methods Used . 3

1.3.2 Datasets Created . 4

1.4 Outline . 4

2 Overview of Typographic Features 6

2.1 Typographic Features . 6

2.1.1 Construction . 6

2.1.2 Style . 8

2.1.3 Terminal . 10

2.1.4 Typesetting . 11

2.1.5 Abstract Features . 12

3 Related Works 15

3.1 Typographic Analysis . 15

3.2 Text Extraction . 16

3.2.1 Text Detection . 16

3.2.2 Text Segmentation . 16

3.3 Deep Learning for Image Classification 18

x

3.4 Deep Learning for SVG Images . 20

3.5 Conclusion . 22

4 Methods 24

4.1 Calculation of Contrast . 25

4.1.1 Description of Method . 25

4.1.2 Dataset and Metric . 28

4.2 Classifying Serif Type . 29

4.2.1 Description of Method . 29

4.2.2 Dataset and Metrics . 30

4.3 Typographic Similarity . 31

4.3.1 Description of Method . 31

4.3.2 Dataset and Metrics . 32

4.4 Typographic Complexity . 32

4.4.1 Description of Method . 32

4.4.2 Dataset and Metrics . 34

4.5 Conclusion . 35

5 Results 36

5.1 Calculation of Contrast . 36

5.1.1 Analysis . 37

5.2 Classifying Serif Type . 40

5.2.1 Analysis . 41

5.3 Typographic Similarity . 42

5.3.1 Analysis . 43

5.4 Typographic Complexity . 45

5.4.1 Analysis . 46

5.5 Conclusion . 46

6 Summary 53

6.1 Results . 53

6.1.1 Contrast Calculation . 53

6.1.2 Classifying Serif Type . 54

6.1.3 Typographic Similarity . 54

6.1.4 Typographic Complexity . 55

6.2 Future plans . 55

xi

Bibliography 56

xii

Chapter 1

Introduction

The digitalization and digital transformation taking place in today’s world have im-

pacted all aspects of society. One of the most important aspects of this transformation

is the concept of limiting usage of paper or, as it is sometimes called, “going paperless”

[1]. This has impacted various aspects of society and culture, not the least of which is art

[2]. Among those affected by this transformation in art, is the Museum Für Gestaltung

in Zürich, which owns a digitized collection of posters that have been collected since the

opening of the Museum in 1875 [3].

The Museum has established a partnership with the EPFL+ECAL lab to pursue a

design research project on this digitized collection of posters. The overall aim of this

research project, known as the Poster World project, is to valorize and reveal hidden

aspects and treasures in this collection. One important aspect of this project is to form

a basis for selecting and presenting posters to a viewer in a meaningful manner. While

classic methods focusing on the metadata (designer, year, etc.) already exist, there is a

need for more innovative methods that capture the interest of the visitor who views the

collection. In that regard, the project aims at extracting various other aspects regarding

the content of the posters. One such aspect is the Typography of the written content.

Typography is defined as “the art of arranging type which makes written language read-

able, legible, and appealing”, involving the selection of various aspects such as typefaces,

line-spacing, letter-spacing, point-sizes, etc. [4]. The topic of this thesis concerns “Auto-

matic Typographic Analysis” of the text in the poster collection. The aim is to develop

tools using methods in Computer Vision and Machine Learning, in general, to extract

concrete and abstract typographic features from the posters and then build associations

of posters that are semantically meaningful.

1

1.1. History and Importance of Typography

The word “Typography” comes from the Greek roots of typos and graphia, which mean

“impression” and “writing” respectively [5]. Early examples of typography date back to

the Minoan Bronze Age, like the “Phaistos Disk” [6]. However, the modern “Movable

Type” was not invented until the 11th century in China during the Song dynasty [7].

The initial versions at that time were manufactured using ceramics and clay. These were

followed by wooden and metal ones in the 12th [8] and 13th century [9] respectively.

However, the modern lead-based movable type (and later the mechanical printing press)

was not invented until 1439 and is attributed to Johannes Gutenberg [10].

In typography, there are three main focus points, namely, legibility, readability, and

aesthetics. Legibility, as defined by Walter Tracy, is the “the quality of being decipherable

and recognizable”. It is a question of how decipherable are the individual characters and

letters. On the other hand, readability is defined as how easy the text is to read overall

[11]. Finally, the consideration of harmonizing typefaces and layouts which produce a

tasteful and appealing display is known as the concept of aesthetics [10].

The reason why typography is an important consideration is that it has strong asso-

ciations with different societal, cultural, and historical aspects. Therefore, the analysis

of typography has the potential to reveal such hidden aspects of the poster collection.

For example, typography can sometimes represent national and cultural identities. Since

typography precedes nations, it does not necessarily convey national identities. However,

because nationalist sentiments developed on the back of print language, different cultures

have over time adopted various typographic features [12][13].

1.2. The Poster Collection

The Museum Für Gestaltung in Zurich has a collection of nearly 120,000 posters. A

subset of 1500 posters from this collection is made available for analysis in this thesis.

Figure 1.1 displays a sample of the collection.

1.3. Summary of Tasks Performed

While typographic features are numerous (as detailed in chapter 2), this thesis focus on

four of them, which were selected based on discussions with the designers at EPFL+ECAL

2

Lab. The four features and the associated tasks are listed below:

• Contrast: Given an image of a character, can the contrast be accurately calculated?

• Recognizing Serifs: Given a dataset of images of characters of different Serifs types

(San-Serif, Triangular, Linear, and Slab), can a model be built to accurately predict

the Serif type?

• Typographic Similarity: Given a dataset of images of different fonts without font

labels, can a latent representation be built that learns to cluster together characters

of similar features?

• Typographic Complexity: Given a dataset of posters with typographic content,

can a representation of typographic complexity be built, which could be used to

associate posters of similar complexity?

1.3.1 Methods Used

Contrast Calculation: For calculating the contrast, a multi-step geometrical algo-

rithm is proposed that exploits the inherent infinite scalability of Vector graphics. The

algorithm is evaluated thanks to a dataset annotated by a type font expert.

Recognizing Serifs: Since this is a classification task, we applied state-of-the-art ap-

proaches for classification. The serifs are a subtle feature, both general image classification

and fine-grained image classification approaches are evaluated. The models are evaluated

on a custom dataset created using common font families.

Typographic Similarity: While work has been done on building latent representa-

tions for similarity using raster images, they either fail to capture font features or use

conditions on both fonts and characters (Which are not available for datasets of scene

text). A Variational Auto-Encoder (VAE) based on Vector graphics is proposed instead

which uses only character labels to build meaningful representations with limited data.

Typographic Complexity: Typographic complexity is a highly abstract concept that

can vary from one designer to another. Within this project, an attempt is made to

capture this concept using feature descriptors for the poster collection that use the shape

information from the vector graphic representation in an attempt to encode the notion

of typographic complexity.

3

1.3.2 Datasets Created

Fonts Dataset: The dataset was built by first selecting a range of common fonts by

consulting a typography designer at the EPFL+ECAL lab. Afterward, for each font 62

images (26 uppercase, 26 lowercase, 10 digits) were extracted, making a total dataset

of size 24366 images, labeled for the character, font, and serif type. All images were

produced in both Raster and Vector format. A further font independent test set (for

serif classification) was created where each font was a single variation from a unique font

family. A total of 28 font variations were used which made a total of 1736 images in the

test set.

Poster Dataset: A dataset of characters from the poster set was also created by first

segmenting individual characters from the posters, and then converting them to Vector

format.

1.4. Outline

Summary of the chapters of the thesis work:

Chapter 2: Typography This chapter presents an overview of common typographic

features used by designers when analyzing fonts. The presented features are not all

necessarily the focus of this thesis. Instead, it is meant to serve as a comprehensive

summary of important typographic features

Chapter 3: Related Works The chapter presents a summary of the related literature

to the topic in focus. All relevant literature is covered including typographic analysis,

text detection and segmentation, deep learning for image classification, and deep learning

on vector graphics.

Chapter 4: Methods This chapter describes the methodology used for each task

performed, including the datasets used and the metrics focused on for evaluation.

Chapter 5: Results This chapter presents the results and analysis of the various

methods evaluated.

Chapter 6: Summary This chapter summarizes the tasks and the results achieved

for each, along with future directions of research.

4

(a) (b)

(c) (d)

Figure 1.1: Sample posters from the poster collection at the Museum Für Gestaltung in

Zurich

5

Chapter 2

Overview of Typographic Features

This chapter provides an overview of the various typographic features that are used

by designers when analyzing a particular font. Note that the features mentioned are not

necessarily focused on in the thesis at present, but are mentioned here to ensure a broad

and comprehensive overview of typography. The graphics and examples mentioned are

obtained from two major publications on the topic, namely the The Geometry of Type

[14] and Letter Fountain [15].

2.1. Typographic Features

This section covers the major typographic features. These can be divided into four

major concrete categories (as explained by a type designer at the EPFL+ECAL lab)

namely, Construction, Style, Terminal, and Typesetting. Finer details of each category

are explained in the sub-sections below. Furthermore, there are a couple of more abstract

features that are also considered by designers, which would be also discussed briefly.

2.1.1 Construction

The construction category comprises three main features: Line terms, Structure, and

Spacing.

Line Terms

Line terms are imaginary lines that define the positioning of the font. These include

the Ascent, Descent, Median, Base, and Cap. The specific position of these lines can be

seen in Figure 2.1, with a brief description given below.

6

• Ascent: The topmost line where the upstroke of the lowercase characters should

reach.

• Descent: The lowest point for lowercase characters that go below the baseline.

• Base: The lowest point for all uppercase and most lowercase characters.

• Cap: The height to which the uppercase characters should reach.

• Median: The height to which most lowercase characters should reach (except those

like ’d’ and ’i’ that have a longer upstroke or a tittle).

Figure 2.1: Typography Line Terms: Imaginary lines that define font positioning

Structure

The structure of the font categorizes how slanted it is. This can fall into three cate-

gories. Romans, Obliques, and Italics. See Figure 2.2for examples along with the details

as follows.

• Romans: Straight characters without any slanting.

• Obliques: Forward or back-slanted versions of the Romans

• Italics: These include some simple obliques as well as designs that mimic cursive

writing.

Spacing

The spacing between characters can be either Proportional or Monospace as shown in

Figure 2.3. Each is briefly described below:

• Proportional: The space occupied by each character is different and spacing is

adjusted accordingly

• Monospace: Each character occupies the same fixed space and the character struc-

ture is adapted accordingly

7

Figure 2.2: Typography Structure: From top to bottom Roman, Oblique and Italic

structures

Figure 2.3: Typography Spacing: From top to bottom Proportional and Monospace

spacing

2.1.2 Style

The style category comprises the weight, proportion, distortion, contrast, and axis of

the font.

Weight

The weight of the font is defined as the thickness of the character outlines relative to

the height of the font. These come in various thicknesses with the major ones being (in

increasing order of thickness), Thin, Light, Regular, Medium, Bold, and Black, as shown

in Figure 2.4.

8

Figure 2.4: Typography Weight: From left to right Thin, Light, Regular, Medium, Bold

and Black weights

Proportion

The proportion refers to the width of a character relative to the height. It can be

of three types Condensed, Regular and Extended, in the order of increasing width. See

Figure 2.5 for a visual example.

Figure 2.5: Typography Proportion: From left to right, Condensed, Regular and Ex-

tended proportions

Distortion

The distortion in a font is the variation in the width of the stem relative to the thickness

of the rest of the font. Distortion is defined as a percentage, and an example of 80%,

100% (no distortion), and 120% can be seen in Figure 2.6.

Figure 2.6: Typography Proportion: From left to right 80%, 100% (no distortion), and

120% distortion

9

Contrast

In typography, contrast denotes the ratio between the thickest and thinnest strokes.

See Figure 2.7.

Figure 2.7: Typography Contrast: Examples of different levels of contrast

Axis

The axis is an imaginary line drawn from top to bottom in a character which indicates

the angle of stress when strokes of various thickness are used. A straight line indicates zero

stress while a left or right-angled axis indicates positive or negative stress respectively,

as shown in Figure 2.8.

Figure 2.8: Typography Axis: Examples of different levels of contrast

2.1.3 Terminal

The terminal category considers the form of the ending strokes of a font, which can be

Sans-Serif or Serif. Sans-Serif fonts don’t end in Serif strokes as shown in Figure 2.9.

Figure 2.9: Typography Sans-Serif: Example of a sans-serif font

Fonts ending in a Serif can have three types, namely Triangular, Linear and Slab.

Examples can be seen in Figure 2.10.

10

(a) Triangular

(b) Linear

(c) Slab

Figure 2.10: Typography Serifs: Examples of different Serif types

2.1.4 Typesetting

Typesetting is the art of arranging text to make it ready for printing. It includes the

concepts of Letter-spacing, Orientation, and Lowercase/Uppercase representations.

Letter-Spacing

Letter-spacing can be normal, narrow, or wide. Examples of the three can be seen in

Figure 2.11.

Figure 2.11: Typography Letter-spacing: Top to bottom Normal, Narrow and Wide

spacing

11

Orientation

Orientation can also be of three types, namely horizontal, vertical and curvilinear, as

shown in Figure 2.12

Figure 2.12: Typography Orientation: Horizontal (Left-Top), Curvilinear (Left-Bottom)

and Vertical (Right)

Lower and Uppercase

Lower and uppercase characters can be represented in four ways: first letter capital-

ization, all lowercase, all caps and small caps. These are shown in Figure 2.13

Figure 2.13: Typography Lower and Uppercase: first letter capitalization (Left-Top), all

lowercase (Right-Top), all caps (Left-Bottom) and small caps (Right-Bottom)

2.1.5 Abstract Features

Abstract features are those that are neither strictly defined like the Serifs and Capital-

ization, nor strictly quantifiable like the Contrast and Weight. These features may have

a subjective interpretation that varies from one designer to another. Two such features

12

are covered here, namely “Typographic Similarity” and “Typographic Complexity”.

Typographic Similarity

In some ways, the typographic similarity is the more concrete of the two. The idea

being that can a latent representation be defined (whether through hand-crafted features

or some other method) in which characters of the same Font (sharing same typographic

features) would be closer and those with different features would be further away? Such

a representation would be independent of the structure of character, whereby grouping

characters of the same “font” together rather than grouping together the same characters

regardless of the font.

This was the focus of most of the research up till now in typographic analysis with

works like [16], [17] focusing on using Variational Auto-Encoders (both with and without

conditions) to learn a latent space representation for the characters.

Typographic Complexity

The complexity of a typeface is a highly abstract concept that can vary according

to several parameters. Since this is a subjective concept with no strict definition, the

details mentioned here are a summary of the discussions on the topic with a typography

design expert at the EPFL+ECAL lab. Basically, the concept of complexity covers both

local and global parameters and the variation in both contributes to the overall notion of

complexity of a typeface. For example, consider Figure 2.14, which shows the difference in

single (low complexity) and double (high complexity) story representations of lowercase

characters.

Figure 2.14: Typographic complexity at a local (character) level: single and double story

representation of sample lowercase characters a

ahttps://www.quora.com/Why-is-the-shape-of-the-letter-%E2%80%9Ca%E2%80%

9D-in-computer-fonts-different-from-its-handwritten-version

13

https://www.quora.com/Why-is-the-shape-of-the-letter-%E2%80%9Ca%E2%80%9D-in-computer-fonts-different-from-its-handwritten-version
https://www.quora.com/Why-is-the-shape-of-the-letter-%E2%80%9Ca%E2%80%9D-in-computer-fonts-different-from-its-handwritten-version

Similarly, consider Figure 2.15, which gives an example of a more global notion of

complexity. The word at the bottom has a visually simpler design compared to the one

at the top. However, it should be noted that in the end this is quite an abstract notion.

While the examples shown are some simple examples with easily discernible features, the

overall notion can be quite subtle, with differences that need an expert to identify.

Figure 2.15: Typographic complexity at a global (word) level: Example of a simple

(bottom) and complex (top) representations of the same worda

ahttps://www.webdesign.org/where-the-web-typography-trend-is-going-in-2016.

22607.html

14

https://www.webdesign.org/where-the-web-typography-trend-is-going-in-2016.22607.html
https://www.webdesign.org/where-the-web-typography-trend-is-going-in-2016.22607.html

Chapter 3

Related Works

This chapter focuses on the relevant literature of this thesis. The literature reviewed

focuses on four sections. The first is on typographic analysis, looking for any existing

methods in this area. The second is on text extraction covering methods focusing on

both text detection and segmentation. The third focuses on the current state-of-the-

art in image classification, because of its direct applicability towards some aspects of

typographic feature classification. The fourth and final section covers literature related

to deep learning on SVG images.

3.1. Typographic Analysis

In the domain of automatic typographic analysis, there is a lack of literature. A couple

methods focus on a designing a Variational Auto-Encoder [18] to build a latent space

representation of the font structure. Favre [16] attempted this on a dataset of charac-

ters extracted from posters. They did not have any information about the character or

the font type, but instead employed a special loss function imposed on distance between

letters of the same word in latent space. Their work failed to achieve any meaningful

representation, with latent space grouping characters together, without any notion of

similarity in terms of typography. Another work [17], used fonts from the google fonts

database. Since they knew both the character and the font, the auto-encoder was con-

ditioned on both parameters. They achieved much better and more meaningful results

(with the latent spacing grouping together characters from similar fonts), but had the

constraint of requiring both the knowledge of the character and the font type. Other

than these two the available literature primarily focuses on analysis of the font and not

the typography, with methods focusing on font classification like the Adobe DeepFont

15

[19] and some works on font size recognition in documents like [20].

Recently, some attempts have been made towards features that are primarily related

to document text but can have applications towards typography. Such as text line de-

tection [21] and baseline detection [22]. One method [23] attempted at build a feature

representation of fonts, but instead focused on categories more appropriate to print types

like “historical” and “fancy” rather than typographic feature categories.

3.2. Text Extraction

This section summarizes the literature regarding text extraction, focusing both on de-

tection/localization and segmentation. The majority of the works found on this topic

focus primarily on text detection and localization, with a lack of literature on text seg-

mentation.

3.2.1 Text Detection

Methods in text detection are numerous and can be categorized by their application

area [24], namely long text, multi-oriented text and irregular text. The current state-of-

the-art for each category is shown in Table 3.1.

The current method that performs best across all three categories is Character Region

Awareness for Text Detection (CRAFT) method which has state-of-the-art results across

all three major text detection datasets (ICDAR 2013 [34], ICDAR 2015 [35], ICDAR 2017

[36]).

3.2.2 Text Segmentation

When it comes to text segmentation, there is lack of both methods and datasets in

the domain. Extensive search for literature revealed three recent works that achieved

state-of-the-art results on the available datasets. Two end-to-end deep learning methods

and one based refinement method using the CRAFT detector as a pre-processing step.

Al-Rawi et al. [37] proposed a segmentation method based on the DeepLabV3+ [38]

model. Their method achieved second best results on the segmentation challenge of

the ICDAR 2013 dataset [34] and state-of-the-art on the KAIST dataset [39]. More

recently, Xu et al. [40] propose a “Text Refinement Network” (TextRNet), which uses

a DeepLabV3+ [38] or HRNet [41] semantic segmentation model as a backbone, and

16

Method Type Current State-of-the-Art

Long Text

Detecting Oriented Text in Natural Images by Link-

ing Segments [25]

R2CNN: rotational region CNN for orientation robust

scene text detection [26]

Multi-Oriented Scene Text Detection via Corner Lo-

calization and Region Segmentation [27]

Multi-oriented Text

Geometry-Aware Scene Text Detection With Instance

Transformation Network [28]

Rotation-Sensitive Regression for Oriented Scene

Text Detection [29]

EAST: An Efficient and Accurate Scene Text Detec-

tor [30]

Irregular Text

Character Region Awareness for Text Detection [31]

Look More Than Once: An Accurate Detector for

Text of Arbitrary Shapes [32]

Efficient and Accurate Arbitrary-Shaped Text Detec-

tion With Pixel Aggregation Network [33]

Table 3.1: Text detection state-of-the-art

applies key feature pooling and attention to improve the segmentation maps. They

achieve state-of-the-art accuracy on ICDAR 2013, COCO_TS [42], MLT_S [43] and

their own introduced dataset TextSeg [40].

It is important to note that most of these datasets were introduced many years ago and

are very small in size to be sufficient for the latest deep learning methods. ICDAR 2013

segmentation set has only 230 images, while KAIST (released in 2010) has 300 english

and 1071 korean text annotated images. While COCO_TS and MLT_S (both released

in 2019) provide a much larger set at 14690 and 6896 images respectively. However,

their pixel-level annotations are not accurate, having been done automatically through

a weakly-supervised method. Finally, the TextSeg dataset, released recently in 2021

contains 2646 training images. Therefore, due to a lack of large, accurately labelled

datasets, text segmentation has not seen a lot of applications of modern deep learning

17

methods.

Another method was proposed by Favre in their undergraduate thesis [16]. They

started with text detection results from CRAFT [31], followed by a skew correction and

connected component based segmentation step. The results achieved seem reasonable

on visual inspection, but fail to segment joint text and very irregular shaped text. The

author does not provide accuracy on any benchmark dataset.

3.3. Deep Learning for Image Classification

This section on image classification focuses on two aspects. On one hand it covers

the state-of-the-art on the standard Image Classification methods such as those on the

Imagenet [44] benchmark. Furthermore, the methods concerning the task of Fine-Grained

Image Classification are also covered in this section. Some typographic features are hard

to distinguish and hence, fine-grained classification methods may be the more appropriate

method for them. For image classification the current state-of-the-art mainly include

EfficientNets [45] (and its variants [46]), NFNets [47] and Vision Transformers [48].

EfficientNet introduced a network architecture scaling method that scales all the dimen-

sions (depth/width/resolution) with what is called a compound coefficient, which is unlike

conventional practice of arbitrary scaling. The model is based on inverted bottleneck and

linear residual blocks of the MobilenetV2 [49] while adding squeeze and excitation layers.

The resulting architecture scaling method is shown in Figure 3.1.

The problem with Effientnets (and most vision models in general) was the usage of

the batch normalization [50] layer. Batch normalization has some significant advantages.

It eliminates mean-shift in the activations and acts as a regularizer. It also allows for

training with larger batch sizes and training rates without overfitting. However, all is not

good about batch normalization. Computing batch-level statistics for the normalization

operation is a computationally expensive task and breaks the assumption of data inde-

pendence of the samples in the mini-batch. To counter this issue NFNets were proposed.

NFNETs tackled the challenge of training large models without batch normalization which

significantly improves training time and computation requirements. To counter the un-

stable training of models without batch normalization, the authors propose an adaptive

gradient clipping strategy and train a set of normalizer-free ResNets [51] that match in

performance the EfficientNet-B7 variant. Since it is crucial to suppress the scale of the

18

Figure 3.1: EfficientNet Model Scaling. (a) is a baseline network example; (b)-(d) are

conventional scaling that only increases one dimension of network width, depth, or res-

olution. (e) is our proposed compound scaling method that uniformly scales all three

dimensions with a fixed ratio [45].

activations on the residual branches, the authors modify the standard ResNet bottleneck

by introducing two scalar parameters α and β to scale activations at the start and end

of the bottleneck. The modified block can be seen in Figure 3.2.

Figure 3.2: Summary of NFNet bottleneck block design and architectural differences.

[47].

The vision transformer [48] is an image classification model inspired from the Natural

Language Processing domain state-of-the-art Transformer [52] model. It is applied to

patches of images. The model was the first example of a fully transformer based model

applied to a vision task without any convolution layers. It achieved state-of-the-art accu-

racy at the time it was published on the Imagenet dataset and still is very competitively

close to the current state-of-the-art. An overview of the model is presented in Figure 3.3.

19

Figure 3.3: Vision Transformer Model overview. An image is split into fixed-size patches,

linearly embedded each of them with added position embeddings, and then fed to a

standard Transformer encoder. To perform classification, an extra “classification token”

is added to the sequence [48].

The current state-of-the-art in Fine-grained image classification is the TransFG model

[53] which builds on top of the vision transformer [48] by employing a “parts selection mod-

ule” to localize the regions with the most distinctive features. It then uses a contrastive

loss on top to improve the discrimination between regions. They achieve state-of-the-art

accuracy on three major datasets, Caltech-UCSD Birds-200-2011 [54], Stanford Dogs [55],

NABirds [56] and currently rank second best on the iNaturalist Species [57]. An overview

of the model is presented in Figure 3.4.

The reason why models like TransFG (and other fine-grained recognition models in

general) are interesting to consider for the task at hand is that they are able to learn

to localize specific parts of the image that are most relevant to the classification task.

This is specifically interesting for typography related tasks like classification of the serif

type, which are found in specific positions on different characters and quite small in size

compared to the overall font.

3.4. Deep Learning for SVG Images

Unlike raster images, deep learning on vector graphics is a domain which has not

received extensive attention. Mostly focused on the generation of vectorized sketches,

20

Figure 3.4: TransFG Model overview. Images are split into small patches (a non-

overlapping split is shown here) and projected into the embedding space. The input

to the Transformer Encoder consists of patch embeddings along with learnable position

embeddings. Before the last Transformer Layer, a Part Selection Module (PSM) is applied

to select tokens that corresponds to the discriminative image patches and only use these

selected tokens as input. Cross-entropy loss and contrastive loss on the final classification

token contribute to the training of TransFG [53].

the SketchRNN [58] used a Long Short-Term Memory (LSTM) [59] based VAE [18].

Recently, the Sketchformer [60] replaced the LSTM based model with a Transformer

[52] based architecture which resulted in better graphic generation due the Transformer’s

ability to better represent long temporal dependencies. These methods worked with

datasets of SVG icons from various themes, focusing on tasks of image reconstruction

and latent space operations.

One of the first methods that could generate full vector graphics with straight lines

and Bezier curves was SVG-VAE [61], which used a one-stage autoregressive approach to

generate path commands. In contrast DeepSVG [62] proposed a two-stage hierarchical

transformer based architecture which instead uses a feed-forward approach to predict

path components in a non-autoregressive manner. This method qualitatively showed

improvement on the task of SVG generation and interpolation compared to the previous

methods. The architecture of the DeepSVG model is shown in Figure 3.5.

21

Figure 3.5: DeepSVG Model overview. Hierarchical Generative Network, DeepSVG.

Input paths {Pi}
Np

1 are encoded separately using the path encoder E(1). The encoded

vectors are then aggregated using the second encoder E(2), which produces the latent

vector z. The decoder D(2) outputs the path representations along with their fill and

visibility attributes {(ûi, f̂i, v̂i)}
Np

1 . Finally {ûi}
Np

1 are decoded independently using the

path decoder D(1), which outputs the actual draw commands and arguments [62].

3.5. Conclusion

From the literature above, it can be seen that typographic analysis is not an area that has

received extensive focus. While there have been some attempts at typographic similarity

on raster images, those have been done using conditions on fonts and characters, of which

the font labels are not available for figurative content. Therefore, while these methods

work well in tasks where all font metadata is known, they fail to generalize well to other

applications.

However, there are quite a few relevant areas of research that can contribute towards

the advancement of automatic typographic analysis. For text, extraction CRAFT seems

to be the clear best for detection, while segmentation has not received a lot of attention,

primarily due to the lack of data. However, both conventional [16] and deep learning

[37], [40] exist for this task. While the deep learning methods easily outperform the

conventional ones when enough data is available. The lack of labeled data means that

the conventional methods are also quite competitive.

For classification-related tasks, the current state-of-the-art methods include Efficient-

22

Nets, NFNets, and Vision Transformers, while the task of fine-grained image classification

is lead by the TransFG model, which builds on top of the Vision Transformer. Similarly,

for deep learning on SVG images, DeepSVG Hierarchical Auto-Encoder based on the

Transformer seems to be the best among a limited number of attempts in the area. All

methods focus on the task of icon generation and don’t focus on typographic analysis.

The SVG based deep learning methods can be particularly interesting considering that

they inherently encode the geometry of the font, and hence could be a good source to

differentiate specific typographic feature.

Based on this literature, chapter 4 will introduce the tasks to be performed and their

associated methodologies.

23

Chapter 4

Methods

This section focuses on outlining the tasks performed, the methodologies evaluated for

each task along the associated datasets and metrics used for evaluation. Since typographic

features are quite numerous, as mentioned in chapter 2, this thesis focuses on a subset

of those. To select a relevant subset of the features, the designers at the EPFL+ECAL1

lab were consulted to shortlist the most important ones. Based on this discussion four

features were shortlisted to be the focus of this thesis, as listed below:

• Contrast: Given an image of a character, can the contrast be accurately calculated?

• Recognizing Serifs: Given a dataset of images of characters of different Serifs types

(San-Serif, Triangular, Linear, and Slab), can a model be built to accurately predict

the Serif type?

• Typographic Similarity: Given a dataset of images of different fonts without font

labels, can a latent representation be built that learns to cluster together characters

of similar features?

• Typographic Complexity: Given a dataset of posters with typographic content,

can a representation of typographic complexity be built, which could be used to

associate posters of similar complexity?

The methods used to achieve each of these tasks, along with the datasets they are

tested on and the metrics used for evaluation are discussed in the sub-sections below

1https://epfl-ecal-lab.ch/

24

https://epfl-ecal-lab.ch/

4.1. Calculation of Contrast

As discussed in chapter 2, the contrast is the ratio between the thickest and the thinnest

strokes. To calculate the contrast, one can either work with the Raster image format or

the Support Vector Graphic (SVG) image format. Since contrast is defined as the ratio of

the perpendicular width of thickest and the thinnest strokes (see Figure 2.7 in chapter 2),

it makes sense to use the geometric representation rather than the raster one. This would

also allow for a more generalized solution owing to the infinite scalability of SVGs.

4.1.1 Description of Method

A multi-step algorithm is proposed to solve this task (summarized in Algorithm 1).

Consider the SVG image in Figure 4.1. The image has been resolved into individual path

segments (indicated by colors and numbers).

Figure 4.1: Example SVG image, where different colors and numbers indicate separate

path segments

The aim is to find lines between paths running parallel to each other, the ratio between

the maximum and minimum of those would approximate the contrast. One method would

be to calculate perpendicular lines from sample points on each segment to every other

segment in the path. However, that will have the disadvantage of calculating lines that

would not necessarily be between parallel segments. Since SVGs are defined as a sequence

of path segments, there is no notion of which segment is running opposite to another.

However, one way this can be countered is to calculate the medial axis [63]. Given the

fact that the medial path runs through the center of the image, lines going perpendicular

25

to the medial path at any point would intersect two opposite segments of the SVG. Using

this property, the opposite segments can be recognized.

However, there is one more complication. The medial axis is generally defined for

raster images, with the calculation of the same for vector graphics not readily available.

To solve this, one can approximate the vector graphic as a simple polygon. The medial

axis of a simple polygon is well defined problem with linear time solutions [64]. For

this purpose, the SVG is decomposed into path segments defined as 1D parameterized

polynomials Si(t), for segments i = 0...N − 1 for some parameter 0 ≤ t ≤ 1. After

defining the polynomials, one can densely sample points on each segment, which can be

used to approximate the SVG as a simple polygon. The polygon approximation can in

turn be used to calculate the medial axis. This can be seen in Figure 4.2. Note that the

points are sampled sparsely for visualization purposes, while the actual algorithm uses

an order of magnitude denser sampling.

(a) Sampled points defining polygon (b) Calculated medial axis and corner

points

Figure 4.2: Polygon approximation of SVG and associated medial axis

Once the medial path has been calculated, it needs to be trimmed to remove the end

branches. Otherwise, the perpendicular will be calculated between the corner segments

which are not running parallel to each other. To trim the lines, first the corners C are

calculated which can also be seen in Figure 4.2. The corners are defined as points between

segments with gradient change higher than Tangle and center points of arcs with curvature

higher than Tcurvature. Once these corners are obtained, the points closest to them are

deleted systematically. Since we need to stop deleting points once the branching point is

26

reached, a pairwise distance threshold ratio Tdistance ratio is defined. The points will be

trimmed until the ratio between the next two closest points is larger than Tdistance ratio,

working under the assumption that points would grow closer with respect to the corners at

the branching point. Based on this the branches can be removed, followed by calculating

the perpendicular lines through the medial axis intersecting the path segments. The

trimmed medial axis and associated perpendicular lines are shown in Figure 4.3.

(a) Trimmed medial axis (b) Associated perpendicular lines

Figure 4.3: Trimmed medial axis and associated perpendicular lines

Once the perpendicular lines are obtained, the maximum and minimum length lines

can be selected which would indicate the contrast ratio, as shown in Figure 4.4.

Figure 4.4: Contrast result with the maximum and minimum path widths indicted by

lines marked “X”

27

Based on this discussion the final algorithm can be summarized as shown in Algorithm

1.

Algorithm 1: Contrast Calculation
Result: Calculation of contrast ratio for SVG image of character

1 initialization: Decompose SVG P into 1D parameterized polynomials Si(t), for

segments i = 0...N − 1 for some parameter 0 ≤ t ≤ 1. ;

2 Define polygon by sampling M points p on each segment for a total of NxM

points. ;

3 Calculate medial axis M of the polygon as defined by [64]. ;

4 Calculate corners C as the junction points of segments with gradient higher than

Tangle and center points of arcs with curvature higher than Tcurvature. ;

5 foreach c in C do

6 Calculate sorted distances D between c and all points m ∈M ;

7 Sort M according to D ;

8 initialize: i = 0, ratio =∞ ;

9 while i < Size(D)||ratio > Tdistance ratio do

10 ratio = D(i+1)/D(i) delete D(i) delete M(i)

11 end

12 end

13 foreach m in M do

14 Calculate array A of line lengths perpendicular to the medial axis at m and

intersecting P ;

15 end

16 Calculate Contrast = max(A)/min(A)

4.1.2 Dataset and Metric

The dataset used for evaluation of contrast comprises 90 images composed of six font

categories (Linear, Slab, Triangular, Humanistic Sans, Lineal Grotesk, and Geometrical),

three fonts per category, and five characters per font. Each was manually marked by

a designer at EPFL+ECAL lab and used to manually calculate font contrast. Sample

images are shown in Figure 4.5, while the full list of fonts used with associated font

categories is shown in Table 4.1.

28

Figure 4.5: Sample test images contrast ratio marked and calculated

4.2. Classifying Serif Type

Since the recognition of the Serif Type is a classification problem, it was decided to

use existing classification methods literature. Details of the methods are described in the

subsections below.

4.2.1 Description of Method

As discussed in chapter 3, among the current state-of-the-art models in image classi-

fication is the EfficientNet [45] and its variants. Similarly, for the fine-grained image

classification task, the current best model across various datasets is the TransFG [53]

architecture which builds upon the Vision-Transformer [48] image classification model.

While serifs are quite a distinctive feature as shown in chapter 2, they are quite small

compared to the overall font image. And the Serif may appear in different positions

depending on the character under consideration. Therefore, it is unclear whether the

problem is better formulated as an image classification scenario or a fine-grained clas-

sification scenario. Given this, it was decided to try both kinds of models to see what

worked best in this case. For the EfficientNet, the variant EfficientNet-B2 was the biggest

one that could be trained given the resource constraint, while for TransFG, the Vision

Transformer Base model (ViT B) with 12 transformer layers was the largest feasible one.

Two variants of the ViT B were attempted as defined in the ViT paper [48], with a patch

size of 16× 16 (ViT B/16) and 32× 32 (ViT B/32).

29

Font Category Font Family

EB Garamond

Libre BaskervilleTriangle Serifs

Libre Caslon Text

Abhaya Libre

Bodoni ModaLinear Serifs

Rozha One

Arvo

Hepta SlabSlab Serifs

Zilla Slab

Alegreya Sans

Open SansHumanistic Sans

PT Sans

Darker Grotesque

InterLineal Grotesk

Space Grotesk

Josefin Sans

PoppinsGeometrical

Rajdhani

Table 4.1: List of fonts used along with their associated categories

4.2.2 Dataset and Metrics

Training and validation datasets were built by first selecting a range of common fonts

(including variations) for the four categories (sans-serif, triangular, linear, and slab) by

consulting a typography designer at the EPFL+ECAL lab. Afterward, for each font

variation, 62 images (26 uppercase, 26 lowercase, 10 digits) were extracted, making a

total dataset of size 24366 images. 80% (19492) of these images were used in training

while 20% (4874) were used for validation. To ensure that the model was actually learning

the serif features and not over-fitting and memorizing font families, a font independent

test set was created where each font was a single variation from a unique font family.

A total of 28 font variations were used which made a total of 1736 images in the test

30

set. The results were evaluated using accuracy measures across the three sets, along with

Precision, Recall, and F1-score on the test set. A summary of the dataset is provided in

Table 4.2.

Dataset Train Validation Test (Font Independent)

No: of Images 19492 4874 1736

Table 4.2: Summary of dataset for serif classification model

4.3. Typographic Similarity

As discussed in chapter 2, typographic similarity aims at grouping together characters

sharing the same kind of typographic features (belonging to the same font family, having

the same serif type, etc.), regardless of the structure of the character itself. This can be

quite challenging in general because any model trained in an unsupervised manner (like

a VAE) would tend to “memorize” the more obvious character structure and group those

together rather than learn the more subtle underlying features unique to each font family

(as discussed in chapter 3 in the work by Favre [16]). A workaround to this was to use

conditions on the character, font family, and font variations, as proposed by [17], which

enabled the model to learn some specific features like the serif classification. However,

this method lends a challenge, considering the fact that it was trained on conditions of

the font and character both on a large dataset of <10000K fonts. Such a large amount of

font labeled data is not available for figurative content, which is the eventual use-case and

motivation for this research. Therefore, the aim here would be to learn a useful latent

representation using either no labels or only character labels.

4.3.1 Description of Method

As already discussed above and in chapter 3, the existing methods employing VAEs

to build a latent representation of fonts use raster images with various label conditions.

However, there is no existing work in literature that does this task using the SVG rep-

resentation of fonts. The reason why that should be considered is that it provides an

advantage in being invariable to size consideration (due to the property of infinite scal-

ability) and better encoding the geometric details of the font (due to the vector repre-

sentation). Therefore, it is proposed to use a VAE on the SVG representation with and

31

without character labels to build a latent representation. The used model is inspired by

the DeepSVG [62] Hierarchical Generative Network discussed in chapter 3.

4.3.2 Dataset and Metrics

The Training dataset used is the same as the Serif classification task, built by first

selecting a range of common fonts (including variations) for the four categories (sans-serif,

triangular, linear, and slab) by consulting a typography designer at the EPFL+ECAL

lab. Afterward, for each font variation, 62 images (26 uppercase, 26 lowercase, 10 digits)

were extracted, making a total dataset of size 24366 images. The models are trained both

with and without character conditions on the varying sizes of the latent dimension. The

model is evaluated on how well it is able to group characters of the same serif type and

belonging to the same font family, as well as the impact of the variation in the size of the

latent dimension.

4.4. Typographic Complexity

As previously mentioned in chapter 2, typographic complexity is a pretty abstract

concept. To better define the task at hand, the typeface designers at the EPFL+ECAL

Lab were consulted to understand what the end goal was for this concept of complexity

in the broader context of their projects. The identify objective is to be able to group

posters based on their level of typography complexity. Therefore, a method is proposed

to make a first attempt towards incorporating the various discussions into a concrete

feature description for complexity.

4.4.1 Description of Method

As discussed in chapter 2, the notion of complexity has both a local and a global

context. It can incorporate aspects like the complexity of a single character, as well as

the overall complexity of a word (which can then also connect to other factors like the

number of characters per word and number of words per poster). Therefore, to consider

all of these different factors, a basic feature descriptor is proposed which incorporates

these features. The number of characters per word and the number of words per poster

is easily quantifiable. But the question is then on how to quantify the complexity of

individual characters on the posters. One possible answer for this goes back to the SVG

representation of an image. An image that is more complex would require more points

and segments to define it, as shown in Figure 4.6.

32

(a) Low Complexity (32 points) (b) High Complexity (38 points)

Figure 4.6: Example of difference in number of points for low and high complexity SVGs.

So as a basic descriptor, one can incorporate the number of paths/points per SVG of

the character to better model the approximate level of “complexity” in each. However,

the question then comes to how these would be aggregated to make a word level, and

then later a poster level descriptor. To do so, one can take a statistical measure of the

points/paths, and then use that along with the number of words and characters. Based

on this idea, the following basic description vectors are proposed at the poster level:

• Descriptor 1 (Des-AVG):

? Number of words per poster

? Number of characters per poster

? Mean number of characters per word

? Mean number of paths per character

? Mean number of points per path

• Descriptor 2 (Des-MAX):

? Number of words per poster

? Number of characters per poster

? Max number of characters per word

33

? Max number of paths per character

? Max number of points per path

• Descriptor 3 (Des-STD):

? Number of words per poster

? Number of characters per poster

? Std. Dev. of number of characters per word

? Std. Dev. of number of paths per character

? Std. Dev. of number of points per path

• Descriptor 4 (Des-ALL):

? Number of words per poster

? Number of characters per poster

? Mean number of characters per word

? Max number of characters per word

? Std. Dev. of number of characters per word

? Mean number of paths per character

? Max number of paths per character

? Std. Dev. of number of paths per character

? Mean number of points per path

? Max number of points per path

? Std. Dev. of number of points per path

The first three descriptors take different statistical measures for the various features,

while the fourth one aggregates all three. Since the features in the descriptors are cor-

related, the extracted feature vectors are transformed to a lower dimension space using

Principal Component Analysis (PCA) [65].

4.4.2 Dataset and Metrics

Since there is no objective measure for evaluation, one can come up with different

feature descriptors and then use them to pull similar posters from the dataset and ask

the designers to choose which they think is the most similar in terms of complexity.

34

This is exactly what was done in this case. First, a poster was randomly selected from

the dataset, called the “Reference” poster. Then, for each descriptor, three most similar

posters to the “Reference” poster were collected, to form four sets of four posters (1

Reference, and 3 most similar based on the descriptor). These four sets, along with the

fifth set of 4 (1 Reference, 3 randomly chosen) added as a control, were presented to

multiple designers at the EPFL+ECAL lab in the form of a questionnaire. The designers

were asked to rate which set they thought was the most similar in terms of typographic

complexity. To better aggregate the results, three such questionnaires were made (each

with a different Reference poster randomly selected). The results are used to understand

which, if any, of the descriptors are meaningful measures for complexity.

The dataset used was a set of 1500 posters from poster collection at The Museum

Für Gestaltung in Zurich, introduced in chapter 1 (refer to sample posters in Figure 1.1).

First, the dataset characters were segmented using the method proposed by Favre [16],

who worked on the same dataset. Then each image was converted to SVG format before

being used in the analysis.

4.5. Conclusion

In this chapter, methods are proposed for solving each task. For contrast calculation,

a multi-step algorithm is introduced which exploits the inherent geometric nature and

infinite scalability of vector graphics. For the classification of serifs, both general and

fine-grained image classification models are suggested (given resource constraints). These

would be evaluated to see which is more appropriate for the task at hand. In the case

of typographic similarity, an SVG-based VAE is proposed (both with and without label

conditions on characters). It aims to exploit the geometric nature of the SVG to build

a latent space representation that learns to differentiate between specific font features.

Finally, on the topic of typographic complexity, four description vectors are proposed

which attempt to aggregate the discussions on complexity with the design experts.

The results for these methods on the associated datasets are presented along with a

detailed analysis in chapter 5.

35

Chapter 5

Results

This chapter presents the results for the methods discussed in chapter 4. For each of

the four tasks discussed previously (calculation of contrast, classification of serif types,

typographic similarity, typographic complexity), results and analysis are presented in

separate sections below.

5.1. Calculation of Contrast

As discussed in the methods section, the contrast calculation is evaluated on a dataset

of 90 images labeled by an expert designer. The results are evaluated for different values of

the distance ratio threshold parameter and whether arcs with high curvature are included

as corners or not. For each evaluation, the minimum, maximum, and mean percentage

error across the dataset is calculated. These results are shown in Table 5.1

Distance Ratio Include Arcs Mean Absolute Max Absolute Min Absolute

Threshold in Corners Error (%) Error (%) Error (%)

0.0001 Yes 39.00237 611.36658 0.30460

0.0001 No 43.68014 611.36658 0.30460

0.001 Yes 65.16174 1257.42230 0.01848

0.001 No 72.60139 1257.42230 0.01848

Table 5.1: Mean, Maximum and Minimum absolute percentage error in contrast for dif-

ferent values of distance ratio threshold (Tdistance ratio) and whether corners are included

as curves or not.

36

5.1.1 Analysis

To better understand the behavior of the algorithm, the maximum and minimum error

instances are further analyzed, for Tdistance ratio = 0.0001 and arcs included as corners.

For the maximum error, the ground truth annotation, SVG boundary, and medial path

are displayed in Figure 5.1. Notice, how the boundary path is self-intersecting, and

therefore cannot be approximated as a simple polygon in this case. This results in the

medial path algorithm completely failing, resulting in an eventual 600% error compared

to the ground truth.

(a) Ground Truth (b) SVG Boundary (c) Calculated Medial

Path

Figure 5.1: Contrast sample test case with maximum error (611.37%)

In contrast, the sample with the lowest error can be seen in Figure 5.2. Notice how

the path is not self-intersecting, allowing for the correct calculation of the medial path,

resulting in high accuracy of the contrast calculated.

(a) Ground Truth (b) SVG Boundary and

Min/Max lines

(c) Trimmed Medial

Path and Min/Max

lines

Figure 5.2: Contrast sample test case with minimum error (0.30%)

37

To compare how easy or difficult it is to calculate the contrast for a particular letter,

font category, or font family, the same statistics (mean, maximum, and minimum absolute

percentage errors) are extracted across each character, font category, and font family for

Tdistance ratio = 0.0001 and arcs included as corners. The mean, maximum and minimum

percentage error per character can be seen in Figure 5.3. Notice how the character “s”

seems to have the highest maximum and mean errors. However, from Figure 5.1, it is

known that the highest error for this character is > 600%. So after ignoring the top 10%

outliers, the algorithm is worst performing for the characters “e” and “M” (highest mean,

maximum and minimum error).

Figure 5.3: Mean, Maximum and Minimum percentage contrast error per character for

Tdistance ratio = 0.0001 and arcs included as corners. Also shown is the mean and maxi-

mum percentage errors of the bottom 90th percentile

Next, the same statistics are obtained for each font category considered in the dataset.

The associated plots are shown in Figure 5.4. From these results, it can be seen that the

38

serif font categories (linear, triangular, and slab) seem to be the most challenging, while

the sans-serif one is the easiest in general. On the other hand, geometrical fonts are the

most accurately calculated ones, once the top 10% of the outlier error percentages are

ignored.

Figure 5.4: Top row: Mean, Maximum and Minimum percentage contrast error per font

category for Tdistance ratio = 0.0001 and arcs included as corners. Bottom row: mean and

maximum percentage errors of below the 90th percentile.

Finally, to understand the distribution of the errors across individual font families,

the statistics are extracted for each font family within each font category. The associated

plots are shown in Figure 5.5. For details on which font belongs to which category, please

refer to Table 4.1 in chapter 4. Notice how the highest mean, minimum, and maximum

errors are all for the serif fonts. This shows that serif font poses a much more challenging

problem, presenting issues such as the self-intersecting polygon shown in Figure 5.1.

Finally, the histogram distribution of the errors is shown in Figure 5.6. Notice how

39

Figure 5.5: Top row: Mean, Maximum and Minimum percentage contrast error per font

family for Tdistance ratio = 0.0001 and arcs included as corners. Bottom row: Mean and

maximum percentage errors of below the 90th percentile.

most of the errors lie in the first few bins, indicating that overall the model is quite

accurate.

5.2. Classifying Serif Type

For the serif classification, accuracies are calculated on the training, validation, and a

font-independent test set. The resulting accuracy for each trained model on each of the

sets is shown in Table 5.2.

40

Figure 5.6: Error histogram for percentage contrast errors for Tdistance ratio = 0.0001 and

arcs included as corners. The axis has a bin size of 10 percentages/bar.

Model + Backend
Accuracies

Train Validation Test (Font Independent)

TransFG ViT B/16 Backend 0.88954 0.74620 0.79570

TransFG ViT B/32 Backend 0.97958 0.75318 0.89367

EfficientNet-B2 0.98887 0.96635 0.69176

Table 5.2: Train, Validation and Test results for Serif Classification

5.2.1 Analysis

Notice how the general image classification model (EfficientNet-B2) performs best on

both the training and validation set. If it had been performing best on just the train

set, one could claim that the model was overfitting. However, good performance on both

the training and validation sets indicates that the model is not overfitting. However, the

model shows significant accuracy degradation on the font-independent test. This indicates

that the model is memorizing font features rather than learning the subtle features of the

serifs.

In contrast, the fine-grained image classification model, TransFG, performs compar-

atively worse on the train and validation sets but generalizes very well on the test set.

The model with the ViT B/32 backend performs much better than the ViT B/16 one,

with the larger patch size improving accuracy across all three dataset splits. For further

analysis, detailed results are calculated on the test set, including metrics for precision,

recall, which are then used to calculate the F1-score.

The high F1-score for the TransFG models shows that it performs well across all

classes and is not biased any specific. While the EfficientNet-B2 models has an F1-score

41

Model + Backend
Detailed Results on Test Set

Precision Recall F1-Score

TransFG ViT B/16 Backend 0.91 0.80 0.83

TransFG ViT B/32 Backend 0.93 0.89 0.91

EfficientNet-B2 0.80 0.69 0.73

Table 5.3: Precision, Recall and F1-Score for Serif Classification Test Set

which is nearly 0.2 units lower, indicating that it does not generalize well to new fonts.

From these results, it can be concluded that the classification of serif types is better

modelled as a fine-grained classification task rather than a general image classification

problem, given the subtle nature of the serif features.

To understand cases in which the models fail, failure samples are displayed for each on

the test set. These samples can be seen in Figure 5.7, Figure 5.8 and Figure 5.9 for the

ViT B/16, ViT B/32, and EfficientNet-B2 models respectively.

Notice how most of the mistakes for the TransFG models are those where serifs are

either very subtle, or are special cases of serif font instances where the serif does not

appear like the characters “e” and “o”, and digits “0”, “8” and “9”. While the EfficientNet-

B2 model fails on more visually obvious cases, further confirming that it fails to generalize

well on the font independent test set.

5.3. Typographic Similarity

The typographic similarity models are evaluated in two cases. Their ability to associate

characters of the same serif type and the characters of the same font type in the latent

space, with and without character label condition for varying sizes of the latent dimension

z. In that regard, models are trained on the dataset discussed in chapter 4 for three

different latent space dimensions (64, 128, and 256), and two different label conditions

(with character labels and without character labels), making a total of six models. Then

each model is tested on two cases (serifs and fonts). For serifs, 50 of the same characters

are randomly sampled from the dataset for each serif type (sans-serif, linear, triangular,

slab) and a t-distributed stochastic neighbor embedding (TSNE) plot is generated for each

model from latent vector encoding for the character. The resulting plots of various latent

dimension sizes without labels can be seen in Figure 5.10 and with labels in Figure 5.11.

42

Figure 5.7: Sample failure cases on Serif Classification Test Set with TransFG (ViT B/16

Backend)

Similarly for the fonts, 5 different fonts are randomly selected and then 50 characters

are randomly sampled for each font for each model. The associated plots without labels

and with labels can be seen in Figure 5.12 and Figure 5.13 respectively.

5.3.1 Analysis

Consider first the serifs case with Figure 5.10 and Figure 5.11, without labels and with

labels respectively. Notice, how in the labeled case in Figure 5.11, the model is able to

make a distinction between the sans-serif and serif fonts, with all the sans-serifs grouped

closely together compared to the others. However, the model is unable to differentiate

between the various types of serifs. On the other hand, if the unlabelled models are

43

Figure 5.8: Sample failure cases on Serif Classification Test Set with TransFG (ViT B/32

Backend)

considered in Figure 5.10, the differentiation is even less obvious with most of the sans-

serif samples also mixed in with the rest, and not appearing as a separate group. This

shows that the character labels help the model better differentiate between the serif types,

but not well enough to differentiate the more subtle difference between the serif types. It

can be further noted that changing the latent dimension size does not seem to have any

obvious impact. This could be because the dataset is relatively small for even a latent

dimension of size z = 64 to be a bottleneck.

Next consider the case of fonts, with the unlabelled and labeled TSNE plots shown in

Figure 5.12 and Figure 5.13 respectively. Once more the model is able to learn some fea-

tures and group characters from similar fonts together. Notice how the two GillSansNova

44

Figure 5.9: Sample failure cases on Serif Classification Test Set with EfficientNet-B2

variants are grouped close to each other by the labeled models in Figure 5.13. The same

can be observed in the unlabelled case in Figure 5.12, but is much less obvious. Interest-

ingly, there is a subtle visual difference when using different sizes of the latent dimension

z, with the smaller size grouping together the two similar fonts much better than the

larger ones. However, the model is unable to make a clear distinction between the three

other fonts which are different from each other and should ideally be in three separate

clusters.

5.4. Typographic Complexity

For typographic complexity, four different descriptors (Des-AVG, Des-MAX, Des-STD,

Des-ALL) had been defined as described in chapter 4. Afterward, three questionnaires

45

were made, each with one Reference poster (randomly chosen) and three most similar

posters for each metric, along with three posters chosen randomly for control. These were

sent to different design experts who were asked to choose which set in each questionnaire

was the most similar in terms of complexity and which was most dissimilar. A total of

seven responses were received, and the user responses can be seen in Figure 5.14.

5.4.1 Analysis

Based on the results it can be seen that the opinions are quite mixed. For q1 and q3,

the clear best is Des-ALL (Set4), but it ends up being nominated as the most dissimilar

for q2. While not in the majority in q2 and q3 (and not appearing at all in q1), Des-MAX

(set2) is the only one that was mentioned as one of the most similar and not mentioned

as one of the least similar. Surprisingly, Des-STD (set3) got selected as worst more than

the random (set5), with a unanimous agreement on Dissimilarity for q3.

Based on these results, it seems that the two best descriptors among the test ones are

Des-MAX and Des-ALL, while Des-STD ends up being nominated as the worst.

5.5. Conclusion

Results are presented for the four tasks in focus namely contrast calculation, serif clas-

sification, typographic similarity, and typographic complexity. For the task serif classi-

fication, highly accurate results are achieved, with the fine-grained classification model

(TransFG) achieving (∼ 96%) accuracy on a font-independent test set. It is also found

out that a general image classification model (EfficientNet-B2) does not generalize well

to the test set, although performing well both on the train and validation sets. This

indicates that the subtle features of serifs are more suited to a fine grain recognition task.

For contrast calculation, the proposed algorithm achieves a mean error of 39% across

the dataset, with a minimum error of < 0.3%. However, the algorithm fails completely on

outlier cases where the boundary of the character is not a simple polygon (a fundamental

assumption of the algorithm). It is also important to note that the algorithm would be

quite computationally expensive for large datasets considering the large number of loops

that are used in different parts of it. But, in general, as the first attempt on this task,

this algorithm works well across most types of fonts, fast enough for small datasets.

For the typographic similarity, the proposed SVG VAE is able to differentiate sans-

serif and serif fonts, and group together characters from the same font family. But it fails

to differentiate between serif types and fonts of different families. These results may seem

46

worse compared to those presented in [17], but it should be noted that they are achieved

with a dataset of a small number of fonts without font label condition.

Finally, for typographic complexity, four description vectors are proposed which at-

tempt to aggregate the highly abstract notion of typographic complexity as described by

design experts. Among the four descriptors, there is no clear indication for which one

is the best, considering that the responses from the design experts are mixed. However,

some trends can be seen. The designers seem to lean towards Des-MAX and Des-ALL

and seem to reject Des-STD. But the current sample size is not statistically large enough

to draw solid conclusions, and therefore requires further investigation.

47

(a) Unlabelled (64)

(b) Unlabelled (128)

(c) Unlabelled (256)

Figure 5.10: TSNE plots for 50 characters across different serif types, with unconditioned

VAE trained for different latent dimension sizes.

48

(a) Labelled (64)

(b) Labelled (128)

(c) Labelled (256)

Figure 5.11: TSNE plots for 50 characters across different serif types, with conditioned

(on characters) VAE trained for different latent dimension sizes.

49

(a) Unlabelled (64)

(b) Unlabelled (128)

(c) Unlabelled (256)

Figure 5.12: TSNE plots for 50 characters across different fonts, with unconditioned VAE

trained for different latent dimension sizes.

50

(a) Labelled (64)

(b) Labelled (128)

(c) Labelled (256)

Figure 5.13: TSNE plots for 50 characters across different fonts, with conditioned (on

characters) VAE trained for different latent dimension sizes.

51

(a) Similar (q1) (b) Similar (q2) (c) Similar (q3) (d)

(e) Dissimilar (q1) (f) Dissimilar (q2) (g) Dissimilar (q3) (h)

Figure 5.14: Results from the three questionnaires. Top row: most similar descriptor for

each questionnaire. Bottom row: Most dissimilar descriptor for each questionnaire. The

labels are: set1 (Des-AVG), set2 (Des-MAX), set3 (Des-STD), set4 (DES-ALL) and set5

(random).

52

Chapter 6

Summary

The focus of this thesis is on automatic typographic analysis. While typographic

features are numerous (more details in chapter 2), this thesis focuses on four of them

based on discussions with design experts at the EPFL+ECAL lab. The four features and

associated problem statements are mentioned below:

• Contrast: Given an image of a character, can the contrast be accurately calculated?

• Recognizing Serifs: Given a dataset of images of characters of different Serifs types

(San-Serif, Triangular, Linear, and Slab), can a model be built to accurately predict

the Serif type?

• Typographic Similarity: Given a dataset of images of different fonts without font

labels, can a latent representation be built that learns to cluster together characters

of similar features?

• Typographic Complexity: Given a dataset of posters with typographic content,

can a representation of typographic complexity be built, which could be used to

associate posters of similar complexity?

6.1. Results

The results for the four focus tasks are summarized in the following sub-sections.

6.1.1 Contrast Calculation

For contrast calculation, the algorithm accurately calculated the contrast for more than

50% of the dataset with less than 20%maximum error (With the least being less than 1%).

There were a few outlier cases where the algorithm failed because the character shape

53

was a self-intersecting polygon (because of which the employed medial axis calculation

algorithm failed). Statistics across the results show that the Serif fonts are the most

difficult to calculate the contrast for while the geometric and sans-serif ones are the

easiest.

Even with the outliers, the mean error across the entire dataset was 39% with

Tdistance ratio = 0.0001 and arcs included as corners. This shows that the algorithm

can calculate the contrast quite accurately, except for a few outlier cases where the basic

assumption of the algorithm (that the SVG path is not self-intersecting) is not true.

6.1.2 Classifying Serif Type

For the serif classification, the fine-grained image classification model, TransFG, gave

quite accurate results with a font-independent test accuracy of 89.4% and F1-score of

0.91, using the ViT B/32 backend. While its counterpart with the ViT B/16 backend

was not as accurate, it still generalized well on the test set, reaching an accuracy of 80.0%

and an F1-score of 0.83. However, the general image classification model, EfficientNet-

B2, did not generalize well to the test set. With a font-independent accuracy of 69.2%

compared to the validation accuracy of 96.7%. This shows that the model is “memorizing”

the fonts rather than picking up the more subtle underlying serif features. Therefore, it

can be concluded that the serif classification problem is better defined as a fine-grained

image classification problem.

6.1.3 Typographic Similarity

For the typographic similarity, Variational Auto-Encoders were trained on a dataset

of SVG images. A total of six different models were trained with two different label

conditions (unconditioned, conditioned on character labels) and three different sizes for

the latent dimension z = (64, 128, 256). The results showed that the model conditioned

with labels was able to learn to differentiate between serif and sans-serif fonts and group

together variations of the same fonts in the latent space. However, the model was not

able to differentiate between various types of serifs and ended up grouping together some

very different fonts.

Changing the size of the latent dimension did not have a significant impact, which

could be due to the fact that the dataset is quite limited (< 25000 images). However,

visually slightly better results were obtained with a latent dimension size z = 64, but the

difference was very subtle. In short, the model is able to learn some useful features and

54

representation but misses out on some of the finer details.

6.1.4 Typographic Complexity

For typographic complexity, four different feature descriptors (Des-AVG, Des-MAX,

Des-STD, Des-ALL) are defined as discussed in chapter 4. Among the four descriptors,

there is no clear indication for which one is the best, considering that the responses from

the design experts are mixed. However, some trends can be seen. The designers seem to

lean towards Des-MAX and Des-ALL, and seem to reject Des-STD. However, the current

sample size is not large enough to make any solid conclusions.

6.2. Future plans

Based on the results mentioned above, some future directions of research can be seen.

Firstly, with the success of the fine-grained recognition model for serif classification, it

would be interesting to see if a transformer-based classifier working on SVG images can

be competitive or even better than the model working on raster images. Secondly, with

regard to the contrast calculation algorithm, it would be interesting to work towards

dealing with the outliers and edge cases where the boundary is not a simple polygon.

Additionally, for the typographic similarity, a larger dataset should be used to explore if

increase the dataset can result in the model learning a better latent representation and

if it is able to better group together various subtle typographic features.

Finally, in the context of the end application of the project, it would be interesting

to use these new typographic features like contrast and similarity measures to come up

with better descriptors to group together typographically similar posters.

55

Bibliography

[1] A. Heinze, M. Griffiths, A. Fenton, and G. Fletcher, “Knowledge exchange part-

nership leads to digital transformation at hydro-x water treatment, ltd.,” Global

Business and Organizational Excellence, vol. 37, no. 4, pp. 6–13, 2018. doi: 10.

1002/joe.21859.

[2] J. Bowen and T. Giannini, “Digitalism: The new realism?,” Jul. 2014. doi: 10.

14236/ewic/eva2014.38.

[3] R. LZICAR, R. Lzicar, D. Fornari, C. Delamadeleine, and I. B. Caleffi, MAPPING

DESIGN HISTORY IN SWITZERLAND. 2016, p. 192.

[4] R. Bringhurst, The elements of typographic style, 3rd ed. Hartley and Marks, 2005,

p. 32.

[5] Typography | origin and meaning of typography by online etymology dictionary.

[Online]. Available: https://www.etymonline.com/word/typography#

etymonline_v_18894.

[6] B. Schwartz, “The phaistos disk,” Journal of Near Eastern Studies, vol. 18, no. 2,

pp. 105–112, 1959. doi: 10.1086/371517.

[7] J. Needham and C. A. Ronan, The shorter science and civilisation in China. Cam-

bridge University Press, 1994.

[8] J. Needham and T.-h. Tsien, Chemistry and chemical technology. Cambridge Uni-

versity Press, 1993.

[9] H.-b. Ch’on, “Typography in korea,” Koreana, vol. 7, no. 2, pp. 10–19, 1993.

[10] Typography - wikipedia, 2021. [Online]. Available: https://en.wikipedia.

org/wiki/Typography.

[11] W. Tracy, Letters of credit: A View of Type Design, 1st ed. Gordon Fraser, 2003.

56

https://doi.org/10.1002/joe.21859
https://doi.org/10.1002/joe.21859
https://doi.org/10.14236/ewic/eva2014.38
https://doi.org/10.14236/ewic/eva2014.38
https://www.etymonline.com/word/typography#etymonline_v_18894
https://www.etymonline.com/word/typography#etymonline_v_18894
https://doi.org/10.1086/371517
https://en.wikipedia.org/wiki/Typography
https://en.wikipedia.org/wiki/Typography

[12] T. Meyrick, “Typography and the branding of culture: A methodological investi-

gation into the way typography is used to brand cultural festivals in australia,” in

Proceedings of the Inaugural Land Dialogues Conference: Interdisciplinary Research.

2016.

[13] M.Waldeck, “Typography and national identity,” Blucher Design Proceedings, vol. 1,

no. 5, 2014.

[14] S. Coles, The Geometry of type. Thames & Hudson, 2016.

[15] J. Pohlen, Letter fountain : (on printing types). Taschen, 2011.

[16] B. Favre, “Automatic typography analysis on figurative content,” Ph.D. disserta-

tion, Ecole Polytechnique de Lausanne, 2021.

[17] N. Srivatsan, J. T. Barron, D. Klein, and T. Berg-Kirkpatrick, A deep factorization

of style and structure in fonts, 2020. arXiv: 1910.00748 [cs.LG].

[18] D. Kingma and M. Welling, “Auto-encoding variational bayes,” Dec. 2014.

[19] Z. Wang, J. Yang, H. Jin, E. Shechtman, A. Agarwala, J. Brandt, and T. S. Huang,

Deepfont: Identify your font from an image, 2015. arXiv: 1507.03196 [cs.CV].

[20] M. Javed, P. Nagabhushan, and B. B. Chaudhuri, Automatic detection of font

size straight from run length compressed text documents, 2014. arXiv: 1402.4388

[cs.CV].

[21] M. Murdock, S. Reid, B. Hamilton, and J. Reese, “Icdar 2015 competition on

text line detection in historical documents,” in 2015 13th International Confer-

ence on Document Analysis and Recognition (ICDAR), 2015, pp. 1171–1175. doi:

10.1109/ICDAR.2015.7333945.

[22] M. Diem, F. Kleber, S. Fiel, T. Grüning, and B. Gatos, “Cbad: Icdar2017 com-

petition on baseline detection,” in 2017 14th IAPR International Conference on

Document Analysis and Recognition (ICDAR), vol. 01, 2017, pp. 1355–1360. doi:

10.1109/ICDAR.2017.222.

[23] Y. Shinahara, T. Karamatsu, D. Harada, K. Yamaguchi, and S. Uchida, Serif or

sans: Visual font analytics on book covers and online advertisements, 2019. arXiv:

1906.10269 [cs.CV].

[24] S. Long, X. He, and C. Yao, “Scene text detection and recognition: The deep learn-

ing era,” International Journal of Computer Vision, vol. 129, no. 1, pp. 161–184,

2020. doi: 10.1007/s11263-020-01369-0.

57

https://arxiv.org/abs/1910.00748
https://arxiv.org/abs/1507.03196
https://arxiv.org/abs/1402.4388
https://arxiv.org/abs/1402.4388
https://doi.org/10.1109/ICDAR.2015.7333945
https://doi.org/10.1109/ICDAR.2017.222
https://arxiv.org/abs/1906.10269
https://doi.org/10.1007/s11263-020-01369-0

[25] B. Shi, X. Bai, and S. Belongie, “Detecting oriented text in natural images by linking

segments,” 2017 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2017. doi: 10.1109/cvpr.2017.371.

[26] Y. Jiang, X. Zhu, X. Wang, S. Yang, W. Li, H. Wang, P. Fu, and Z. Luo, R2cnn: Ro-

tational region cnn for orientation robust scene text detection, 2017. arXiv: 1706.

09579 [cs.CV].

[27] P. Lyu, C. Yao, W. Wu, S. Yan, and X. Bai, “Multi-oriented scene text detection

via corner localization and region segmentation,” 2018 IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2018. doi: 10.1109/cvpr.2018.

00788.

[28] F. Wang, L. Zhao, X. Li, X. Wang, and D. Tao, “Geometry-aware scene text detec-

tion with instance transformation network,” 2018 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, 2018. doi: 10.1109/cvpr.2018.00150.

[29] M. Liao, Z. Zhu, B. Shi, G.-s. Xia, and X. Bai, “Rotation-sensitive regression for

oriented scene text detection,” 2018 IEEE/CVF Conference on Computer Vision

and Pattern Recognition, 2018. doi: 10.1109/cvpr.2018.00619.

[30] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang, “East: An

efficient and accurate scene text detector,” 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2017. doi: 10.1109/cvpr.2017.283.

[31] Y. Baek, B. Lee, D. Han, S. Yun, and H. Lee, “Character region awareness for text

detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2019, pp. 9365–9374.

[32] C. Zhang, B. Liang, Z. Huang, M. En, J. Han, E. Ding, and X. Ding, Look more than

once: An accurate detector for text of arbitrary shapes, 2019. arXiv: 1904.06535

[cs.CV].

[33] W. Wang, E. Xie, X. Song, Y. Zang, W. Wang, T. Lu, G. Yu, and C. Shen, “Efficient

and accurate arbitrary-shaped text detection with pixel aggregation network,” 2019

IEEE/CVF International Conference on Computer Vision (ICCV), 2019. doi: 10.

1109/iccv.2019.00853.

[34] D. Karatzas, F. Shafait, S. Uchida, M. Iwamura, L. G. i. Bigorda, S. R. Mestre,

J. Mas, D. F. Mota, J. A. Almazan, and L. P. de las Heras, “Icdar 2013 robust

reading competition,” 2013 12th International Conference on Document Analysis

and Recognition, 2013. doi: 10.1109/icdar.2013.221.

58

https://doi.org/10.1109/cvpr.2017.371
https://arxiv.org/abs/1706.09579
https://arxiv.org/abs/1706.09579
https://doi.org/10.1109/cvpr.2018.00788
https://doi.org/10.1109/cvpr.2018.00788
https://doi.org/10.1109/cvpr.2018.00150
https://doi.org/10.1109/cvpr.2018.00619
https://doi.org/10.1109/cvpr.2017.283
https://arxiv.org/abs/1904.06535
https://arxiv.org/abs/1904.06535
https://doi.org/10.1109/iccv.2019.00853
https://doi.org/10.1109/iccv.2019.00853
https://doi.org/10.1109/icdar.2013.221

[35] D. Karatzas, L. Gomez-Bigorda, A. Nicolaou, S. Ghosh, A. Bagdanov, M. Iwamura,

J. Matas, L. Neumann, V. R. Chandrasekhar, and S. e. a. Lu, “Icdar 2015 competi-

tion on robust reading,” 2015 13th International Conference on Document Analysis

and Recognition (ICDAR), 2015. doi: 10.1109/icdar.2015.7333942.

[36] N. Nayef, F. Yin, I. Bizid, H. Choi, Y. Feng, D. Karatzas, Z. Luo, U. Pal, C.

Rigaud, and J. e. a. Chazalon, “Icdar2017 robust reading challenge on multi-lingual

scene text detection and script identification - rrc-mlt,” 2017 14th IAPR Inter-

national Conference on Document Analysis and Recognition (ICDAR), 2017. doi:

10.1109/icdar.2017.237.

[37] M. Al-Rawi, D. Bazazian, and E. Valveny, “Can generative adversarial networks

teach themselves text segmentation?” IEEE Proceedings of International Confer-

ence on Computer Vision Workshops, 2019.

[38] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder

with atrous separable convolution for semantic image segmentation,” in ECCV,

2018.

[39] S. Lee, M. S. Cho, K. Jung, and J. H. Kim, “Scene text extraction with edge

constraint and text collinearity,” in 2010 20th International Conference on Pattern

Recognition, 2010, pp. 3983–3986. doi: 10.1109/ICPR.2010.969.

[40] X. Xu, Z. Zhang, Z. Wang, B. Price, Z. Wang, and H. Shi, “Rethinking text seg-

mentation: A novel dataset and a text-specific refinement approach,” arXiv preprint

arXiv:2011.14021, 2020.

[41] Y. Yuan, X. Chen, and J. Wang, “Object-contextual representations for semantic

segmentation,” 2020.

[42] S. Bonechi, P. Andreini, M. Bianchini, and F. Scarselli, “Coco_ts dataset: Pixel-

level annotations based on weak supervision for scene text segmentation,” in Ar-

tificial Neural Networks and Machine Learning - ICANN 2019: Image Processing

- 28th International Conference on Artificial Neural Networks, Munich, Germany,

September 17-19, 2019, Proceedings, Part III, I. V. Tetko, V. Kurková, P. Karpov,

and F. J. Theis, Eds., ser. Lecture Notes in Computer Science, vol. 11729, Springer,

2019, pp. 238–250. doi: 10.1007/978-3-030-30508-6_20. [Online]. Avail-

able: https://doi.org/10.1007/978-3-030-30508-6%5C_20.

59

https://doi.org/10.1109/icdar.2015.7333942
https://doi.org/10.1109/icdar.2017.237
https://doi.org/10.1109/ICPR.2010.969
https://doi.org/10.1007/978-3-030-30508-6_20
https://doi.org/10.1007/978-3-030-30508-6%5C_20

[43] S. Bonechi, M. Bianchini, F. Scarselli, and P. Andreini, “Weak supervision for

generating pixel–level annotations in scene text segmentation,” Pattern Recognition

Letters, vol. 138, pp. 1–7, 2020, issn: 0167-8655. doi: https://doi.org/

10.1016/j.patrec.2020.06.023. [Online]. Available: https://www.

sciencedirect.com/science/article/pii/S0167865520302415.

[44] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.

Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large

Scale Visual Recognition Challenge,” International Journal of Computer Vision

(IJCV), vol. 115, no. 3, pp. 211–252, 2015. doi: 10.1007/s11263-015-0816-

y.

[45] M. Tan and Q. V. Le, Efficientnet: Rethinking model scaling for convolutional neural

networks, 2020. arXiv: 1905.11946 [cs.LG].

[46] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, Self-training with noisy student

improves imagenet classification, 2020. arXiv: 1911.04252 [cs.LG].

[47] A. Brock, S. De, S. L. Smith, and K. Simonyan, High-performance large-scale image

recognition without normalization, 2021. arXiv: 2102.06171 [cs.CV].

[48] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,

M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby,

An image is worth 16x16 words: Transformers for image recognition at scale, 2020.

arXiv: 2010.11929 [cs.CV].

[49] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, Mobilenetv2:

Inverted residuals and linear bottlenecks, 2019. arXiv: 1801.04381 [cs.CV].

[50] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training

by reducing internal covariate shift,” in Proceedings of the 32nd International Con-

ference on International Conference on Machine Learning - Volume 37, ser. ICML’15,

Lille, France: JMLR.org, 2015, pp. 448–456.

[51] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

arXiv preprint arXiv:1512.03385, 2015.

[52] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, u.

Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings of the 31st

International Conference on Neural Information Processing Systems, ser. NIPS’17,

Long Beach, California, USA: Curran Associates Inc., 2017, pp. 6000–6010, isbn:

9781510860964.

60

https://doi.org/https://doi.org/10.1016/j.patrec.2020.06.023
https://doi.org/https://doi.org/10.1016/j.patrec.2020.06.023
https://www.sciencedirect.com/science/article/pii/S0167865520302415
https://www.sciencedirect.com/science/article/pii/S0167865520302415
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1911.04252
https://arxiv.org/abs/2102.06171
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1801.04381

[53] J. He, J. Chen, S. Liu, A. Kortylewski, C. Yang, Y. Bai, C. Wang, and A. Yuille,

“Transfg: A transformer architecture for fine-grained recognition,” arXiv preprint

arXiv:2103.07976, 2021.

[54] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The Caltech-UCSD

Birds-200-2011 Dataset,” California Institute of Technology, Tech. Rep. CNS-TR-

2011-001, 2011.

[55] A. Khosla, N. Jayadevaprakash, B. Yao, and L. Fei-Fei, “Novel dataset for fine-

grained image categorization,” in First Workshop on Fine-Grained Visual Catego-

rization, IEEE Conference on Computer Vision and Pattern Recognition, Colorado

Springs, CO, 2011.

[56] G. Van Horn, S. Branson, R. Farrell, S. Haber, J. Barry, P. Ipeirotis, P. Perona,

and S. Belongie, “Building a bird recognition app and large scale dataset with

citizen scientists: The fine print in fine-grained dataset collection,” in 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 595–

604. doi: 10.1109/CVPR.2015.7298658.

[57] G. V. Horn, O. M. Aodha, Y. Song, Y. Cui, C. Sun, A. Shepard, H. Adam, P. Perona,

and S. Belongie, The inaturalist species classification and detection dataset, 2018.

arXiv: 1707.06642 [cs.CV].

[58] D. Ha and D. Eck, A neural representation of sketch drawings, 2017. arXiv: 1704.

03477 [cs.NE].

[59] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,

vol. 9, pp. 1735–80, Dec. 1997. doi: 10.1162/neco.1997.9.8.1735.

[60] L. Sampaio Ferraz Ribeiro, T. Bui, J. Collomosse, and M. Ponti, “Sketchformer:

Transformer-based representation for sketched structure,” in 2020 IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 14 141–

14 150. doi: 10.1109/CVPR42600.2020.01416.

[61] R. G. Lopes, D. Ha, D. Eck, and J. Shlens, “A learned representation for scalable

vector graphics,” in 2019 IEEE/CVF International Conference on Computer Vision

(ICCV), 2019, pp. 7929–7938. doi: 10.1109/ICCV.2019.00802.

[62] A. Carlier, M. Danelljan, A. Alahi, and R. Timofte, Deepsvg: A hierarchical gener-

ative network for vector graphics animation, 2020. arXiv: 2007.11301 [cs.CV].

61

https://doi.org/10.1109/CVPR.2015.7298658
https://arxiv.org/abs/1707.06642
https://arxiv.org/abs/1704.03477
https://arxiv.org/abs/1704.03477
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/CVPR42600.2020.01416
https://doi.org/10.1109/ICCV.2019.00802
https://arxiv.org/abs/2007.11301

[63] H. Blum, “A Transformation for Extracting New Descriptors of Shape,” in Models

for the Perception of Speech and Visual Form, W. Wathen-Dunn, Ed., Cambridge:

MIT Press, 1967, pp. 362–380.

[64] F. Preparata, “The medial axis of a simple polygon,” in. Jan. 2006, vol. 53, pp. 443–

450, isbn: 978-3-540-08353-5. doi: 10.1007/3-540-08353-7_166.

[65] K. P. F.R.S., “Liii. on lines and planes of closest fit to systems of points in space,”

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,

vol. 2, no. 11, pp. 559–572, 1901. doi: 10.1080/14786440109462720.

62

https://doi.org/10.1007/3-540-08353-7_166
https://doi.org/10.1080/14786440109462720

	
	
	
	
	
	
	
	
	
	

	

	
	
	
	
	
	
	

	
	
	
	
	

	
	
	

	
	
	
	

	
	
	

	
	
	

	
	
	

	

	
	
	

	
	

	
	

	
	

	

	
	
	
	
	
	

	

	

